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Abstract Species dispersal studies provide valuable

information in biological research. Restricted dispersal

may give rise to a non-random distribution of genotypes in

space. Detection of spatial genetic structure may therefore

provide valuable insight into dispersal. Spatial structure has

been treated via autocorrelation analysis with several uni-

variate statistics for which results could dependent on

sampling designs. New geostatistical approaches (vario-

gram-based analysis) have been proposed to overcome this

problem. However, modelling parametric variograms could

be difficult in practice. We introduce a non-parametric

variogram-based method for autocorrelation analysis

between DNA samples that have been genotyped by means

of multilocus-multiallele molecular markers. The method

addresses two important aspects of fine-scale spatial

genetic analyses: the identification of a non-random dis-

tribution of genotypes in space, and the estimation of the

magnitude of any non-random structure. The method uses a

plot of the squared Euclidean genetic distances vs. spatial

distances between pairs of DNA-samples as empirical

variogram. The underlying spatial trend in the plot is fitted

by a non-parametric smoothing (LOESS, Local Regres-

sion). Finally, the predicted LOESS values are explained

by segmented regressions (SR) to obtain classical spatial

values such as the extent of autocorrelation. For illustration

we use multivariate and single-locus genetic distances

calculated from a microsatellite data set for which auto-

correlation was previously reported. The LOESS/SR

method produced a good fit providing similar value of

published autocorrelation for this data. The fit by LOESS/

SR was simpler to obtain than the parametric analysis since

initial parameter values are not required during the trend

estimation process. The LOESS/SR method offers a new

alternative for spatial analysis.

Keywords Microsattellite markers � Variograms �
Correlograms � Smoothing

Introduction

Population genetic structure is a subject of highly refined

statistical analyses. The dispersion of individuals of a given

species is an evolutionary process contributing to spatial

structures even in a single population. Understanding the

spatial population structure is crucial for species management

and conservation (Manel et al. 2003). Populations can modify

their genetic constitutions by processes such as genetic drift,

mutation, gene flow, and natural selection (Hedrick 2005).

While gene flow and genetic drift act over the whole genome,

natural selection generally operates on individual loci. If

natural selection favours different alleles in different popu-

lations, spatial differentiation is expected. Even in a single

population local spatial patterns are expected under restricted

gene flow. Therefore, restricted dispersal may give rise to

non-random distribution of genotypes in space.

Non-random patterns of spatial distribution at short dis-

tances produce positive spatial autocorrelations, i.e., nearby
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observations tend to be more similar than the distant ones.

By definition, the spatial autocorrelation is the correlation

of a variable with itself through space (Lembo 2007). If

nearby or neighbouring areas yield observations that are

more alike, a positive spatial correlation arise. Such type of

correlation measures the extent to which the occurrence of

an event in a location affects the occurrence of the same

event in a nearby location (Wagner et al. 2005). Detection

of spatial genetic structure by autocorrelation analysis may

therefore provide valuable insight into dispersal.

A number of quantitative methods and models that use

genetic correlated data to address the study of population

structure are available. Some rely on genetic variability

measures using statistics like Fst (Cockerham 1969) to test

correlation of population genetic diversity with geographic

distance by means of permutation tests (Hardy and Veke-

mans 2002). These studies usually involve predefined

populations that are large distances apart and hypothesise

overall absence of spatial structure. The designs are con-

ducted under the premise of random mating and restricted

gene flow between populations.

Other methods are focused in the isolation-by-distance

effects that may arise within continuous populations under

restricted gene flow. Isolation-by-distance effects may lead

to spatial process (Sokal and Neal 1978; Sokal and War-

tenberg 1983). These studies commonly imply genetic data

from a sample of individuals at short spatial distances or

collected from plots embedded within a larger population.

Usually a goal is to cluster together individuals who are

genetically similar to analyse how these clusters relate to

spatial distances (Pritchard et al. 2000). Indices such as

Moran’s I (Moran 1950), Geary’s C (Geary 1954), Ripley’s

K (Ripley 1977) and joint-count statistics (Epperson 2003)

account for autocorrelation and have been widely used to

quantify short distance spatial structures. However, the

common practice of assessing the extent of spatial genetic

structure from these indexes, for example the distance at

which a Moran’s I correlogram reaches zero, could be

misleading since the estimation strongly depend on the

sampling design (Vekerman and Hardy 2004).

Contrary to theoretical expectations, the genetic spatial

structure at a short scale is rarely consistent across loci, so

the analysis of each allele separately may not be sensitive

enough to detect spatial structures (Heywood 1991). It is,

therefore, recommended to use multivariate approaches

based on the analysis of multiple loci simultaneously

(Smouse and Peakall 1999). Therefore, hypervariable

markers such as microsatellites (Litt and Luty 1989) are

useful for these types of studies. Microsatellite (SSR)

markers are common since they increased significantly the

number of alleles and loci to assess differences between

individuals (Epperson 2000; Coltman et al. 2003; Peakall

et al. 2003; Marquardt and Epperson 2004). Polymerase

chain reaction (PCR) amplification of microsatellites shows

in many species that they are highly polymorphic, somati-

cally stable and inherited in a codominant Mendelian

manner. Smouse and Peakall (1999) defined a multivariate

genetic distance between a pair of individuals for several

multiallelic codominant loci. The unweighted distances as

well as other weighting schemes for allele-specific contri-

butions at the locus level (Paetkau et al. 1995) provide a

multiple loci Euclidean dissimilarity between molecular

profiles. Smouse and Peakall (1999) introduce an approach

to autocorrelation analysis from SSR data which is based on

the expected multivariate genetic distances of DNA samples

that are ‘h steps apart’ (lags) in the space. They defined the

squared genetic distance between a pair of genotypes as one

half of the Euclidean distance between vectors containing

allele frequencies as elements. The multilocus distance is

obtained adding single-locus distances across loci and they

are used to calculate empirical correlograms that shows

correlation coefficients between pairs of observations at

each one of several lags (Smouse and Peakall 1999). The

method is implementing in GenAlEx 6 software (Peakall

and Smouse 2006). A characteristic of these empirical cor-

relograms is that the magnitude of autocorrelation and the

extent of non-random structure may depend on the choice of

lag size (Hardy et al. 2003; Peakall et al. 2003).

As alternative to solve some of above problems, vario-

grams of different genetic diversity measures have been

proposed (Piazza and Menozzi 1983; Monestiez and Gou-

lard 1997; Wagner 2003, 2004). Commonly, the term

variogram refers to a plot of the semivariance against spatial

distances. However, several variance measures have been

estimated from pairwise comparisons to build variograms

that provide an estimate of genetic diversity as a function of

spatial distances (Wagner et al. 2005). Supported by the fact

that under stationarity (constant mean and variance for the

spatial process) the autocorrelation depends only on the

spatial distance between sampling units, the empirical

semivariance can be expressed as half of the squared

Euclidean distance between molecular profiles (Schaben-

berger and Gotway 2005). Therefore, variogram-based

analysis could be implemented from genetic distances. The

geostatistical approach avoids the need to select groups of

pairs of observations for specified lags, so since it models a

continuous function on the whole spatial distance domain.

Except for distances between observations smaller than by

the nugget effect (which can be estimated), spatial distances

are regarded as continuous variables avoiding impacts of

different neighbourhood size of discrete correlograms

(Double et al. 2005). In geostatitics of genetic distances, the

samples which are spatially separated by a spatial distance

greater than a threshold value could be regarded as not

genetically correlated. Such threshold is estimated by the

range of the variogram. A high value for the range suggests
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that the spatial structure extends to longer distances. Thus,

the existence of a range different from zero suggests a non-

random distribution of genotypes in space.

In the classical geostatistical approach, the common

practice is to fit parametric variogram models, which are

non-lineal functions of the semivariances. Numerical esti-

mation procedures which demand initial values for the

variogram parameters are required. In this paper, we pro-

pose to work under a geostatistical approach, but modelling

the relationship underlying the plot of genetic distances

(instead semivariance) and spatial distances between pairs

of multilocus-multiallele marker profiles by means of a

non-parametric variogram. The proposal is based on the

smoothing of the spatial trend in the squared Euclidean

genetic distances using local regression technique (LOESS)

(Cleveland et al. 1988; Cleveland and Grosse 1991). The

predicted LOESS values are then modelled by segmented

regressions (SR) (Jennrich and Moore 1975) to obtain

classical semivariogram parameters such as the range

(extent of autocorrelation). The approach is supported by

the Euclidean property of the multivariate genetic distances

that allows visualising such plot as a semivariogram. An

important advantage with regard to parametric variogram

analysis is that the new method does not require initial

parameter values.

We illustrate the application of the new geostatistical

method using a microsatellite dataset from the native

Australian bush rat for which strong spatial genetic anal-

ysis has previously been reported (Peakall et al. 2003). Full

background on bush rats is provided in a series of paper by

Peakall et al. that have explored the genetic and ecological

impacts of habitat fragmentation on the Australian bush rat,

Rattus fuscipes (Lindenmayer and Peakall 2000; Peakall

et al. 2003, 2006; Peakall et al. 2006). Peakall et al. (2003)

reported finding of strong fine-scale spatial genetic struc-

ture in bush rats leading to the prediction that restricted per

generational dispersal was the basis for this pattern. Sub-

sequent mark-recapture studies employing genetic tagging

confirmed highly restricted movements of animals consis-

tent with this prediction. An experimental perturbation

study revealed patterns of population recovery consistent

with the emerging evidence for restricted gene flow in bush

rats. We use this previous knowledge to compare the

results obtained from the parametric and non-parametric

approaches of variogram analyses.

Models and methods

Geostatistical approach

The autocorrelation in a random spatial process can be

analysed via variograms (Cressie 1993), which model

mean or variance of observation differences as function of

a continuous domain of spatial distances. If Z sð Þ is an

attribute Z observed at the spatial location s ¼ x; y½ �0; the

term spatial autocorrelation refers to the correlation

between Z sið Þ and Z sj

� �
; i.e., the correlation between the

same attribute at two different locations si and sj: Second-

order (or weak) stationarity of a random process implies

that the observation mean is constant, E Z sð Þ½ � ¼ l; and the

covariance between attributes at different locations is only

a function of their spatial separation (the lag-vector),

Cov Z sð Þ; Z sþ hð Þ½ � ¼ CðhÞ: Thus, the semivariogram

function of a stationary random process, denoted by c si�ð
sjÞ; only depend on the spatial distance between observa-

tions, and usually is expressed as a semivariance,

c si � sj

� �
¼ 1

2
Var Z sið Þ � Z sj

� �� �� �
ð1Þ

where sj ¼ si þ h and h is the spatial distance o lag

between sample point Z sið Þ and Z sj

� �
: For a second order

stationarity process, the semivariogram can be also

expressed as the expected value of the squared distance

between observations,

c si � sj

� �
¼ 1

2
E Z sið Þ � Z sj

� �� �2
h i

ð2Þ

Therefore, an empirical estimator of a semivariogram, due

to Matheron (1962, 1963), can be obtained as one half of

the average squared distances between pairs of

observations which are h steps apart,

ĉðsi � sjÞ ¼
1

2 Nðsi � sjÞ
�� ��

X

Nðsi�sjÞ
Z sið Þ � Z sj

� �� �2 ð3Þ

where Nðsi � sjÞ represents the set of location pairs with

coordinate difference h ¼ si � sj and Nðsi � sjÞ
�� �� is the

number of distinct pairs in this set (Schabenberger and

Gotway 2005). The name semivariogram is used both for

the function c si � sj

� �
as well as the graph of c hð Þ against

h. When working with covariances, C si � sj

� �
¼

Cov Z sið Þ;Z sj

� �� �
; the graph of C hð Þ: against h is referred

to as the covariogram, and C 0ð Þ represent a variance

component. Similarly, a graph of the correlation R hð Þ
(standardised covariance) against h is termed the

correlogram. If equal variance is assumed (stationarity),

the correlation can be expressed as:

Corr ZðsÞ; Zðsþ hÞ½ � ¼ 1� c hð Þ
Var½ZðsÞ� ð4Þ

When the covariance function is monotonous decreasing,

the semivariogram is increasing and three parameters are

commonly used to describe the spatial trend, the sill, the

range and the nugget. The sill is the upper asymptote value

of the semivariogram and represents the variance under

autocorrelation. The range is the spatial distance at which
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the semivariogram reaches the sill. From a practical point

of view, the observations are regarded as uncorrelated if

they are spatially separated at a distance larger than the

range. When the semivariogram approaches the sill only

asymptotically, i.e., an exponential semivariogram, the

practical range is defined as the distance at which the

semivariogram achieves 95% of the sill. A third parameter

of the semivariogram is the nugget effect, h0; which relates

to variability in a microscale, it represents a variance

component that is not spatially structured and is visualised

as a discontinuity at the origin. If a semivariogram has

nugget h0 and sill C 0ð Þ; the difference C 0ð Þ � h0 is called

the partial sill, hg: The practical range is then defined as the

distance at which the semivariogram has achieved h0 þ
0:95hg: In the no-nugget model the population variance is

directly represented by Var Z sið Þ½ � ¼ C 0ð Þ (Fig. 1). The

faster the semivariogram rises from the origin to the sill,

the faster the spatial structure declines. Commonly used

theoretical semivariogram models are expressed as

exponential, spherical and Gaussian functions; all of

them are continuous function of h (Fig. 2). The empirical

correlogram can be computed from a semivariogram as:

correlogram ¼ 1� predictedsemivariogram

estimated population variance
ð5Þ

Variogram estimation

As showed in Fig. 2 the commonly used parametric models

are nonlinear in the parameters, so they are estimated by

means of iterative numerical procedures which demand

initial parameter values (Schabenberger and Gotway 2005).

In this paper, we propose to replace the classical parametric

fitting of theoretical models by smoothing procedures such

LOESS (local regression) (Cleveland et al. 1988; Cleve-

land and Grosse 1991) to avoid the specification of initial

parameter values. LOESS assumes that, for i = 1 to N, the

ith measurement yi of a response variable y and the cor-

responding measurement xi of its predictor are related as

yi ¼ g xið Þ þ ei where g is a regression function and ei is a

random error. The idea of local regression is that near

x = x0, the regression function g(x) can be locally

approximated by the value of come function (Loader

2004). Such a local approximation is obtained by fitting a

regression surface to the data points xi; yið Þ within a chosen

neighbourhood of the point x0. In the LOESS method,

weighted least squares are used to fit linear or quadratic

regression surface at each neighbourhood centre (x0). Data

points in a given neighbourhood are weighted by a

decreasing function of their distance from the centre of the

neighbourhood (smooth). The radius of each neighbour-

hood is chosen so that the neighbourhood contains a

specified percentage of data points (local points). The

fraction of the data in each local neighbourhood controls

the smoothness of the estimated function and is called the

smoothing parameter. There are several alternatives that

can be used to select the smoothing parameter. One strat-

egy is to use several values for the smoothing parameters

and then statistics, such the Akaike Information Criterion

(Akaike 1973), that allow statistical fitting comparisons.

Since classical selectors, such AIC, tend to undersmooth

and tend to be non-robust in the sense that small variations

of the input data can change the choice of the smoothing

parameter value significantly, Hurvich et al. (1998)

obtained two bias corrected AIC criteria, named as AICc

and AICc1. Another strategy is to use generalised cross-

validation (Craven and Wahba 1979) or residual plots.

When using these criteria for smoothing parameter value

selection (smaller values are better) more than one

smoothing function could result appropriated (similar cri-

teria values). The final strategy is to choose the largest

smoothing parameter that yields no clearly discernible

fitting. Cohen (1999) provided a SAS macro for automat-

ically select the smoothing parameter.

The LOESS-based method

We propose to fit a semivariogram from eq. (3). Instead of

semivariances, our input data are the multivariate obser-

vation squared distances. The data Z sð Þ are microsatellite

allele frequencies in the sampled genotype at location s.

The response variable y, that will be fitted by LOESS, is

one-half of the Euclidean genetic distance between geno-

types, which is expressed as proposed by Smouse and

Peakall (1999). The squared genetic distance will be plot-

ted as function of x = spatial distance between Z sið Þ and

Z sj

� �
: After the predicted trend of the squared Euclidean

genetic versus spatial distances is obtained by LOESS the

classical parameters describing the underlying population

structure are estimated by means of segmented regressions
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Fig. 1 Semivariogram. Spatial process with positive covariance
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(SR) (Jennrich and Moore 1975) of the predicted LOESS

values as a continuous function of the spatial distance. The

proposed LOESS/SR method is non-parametric with regard

to the estimation of spatial trend, the correlograms are

derived from Eq. (5) and no initial parameter values are

required.

Discrete correlograms

Smouse and Peakall (1999) introduce a procedure to obtain

correlograms from direct estimation of correlation coeffi-

cient for a discrete series of lag (h) previously selected. An

Euclidean metric is used to compute a correlation coeffi-

cient for the series of chosen lags which reflects the

covariance pairs of individuals that are ‘h steps apart’. The

correlation coefficient has a zero value when there is not

autocorrelation. Two procedure parameters, the distance

class size and the number of distance classes, should be

defined prior to calculate the correlation coefficients that

will yield the correlogram. These parameters determine the

series of lags. The first distance class for which the coef-

ficient correlation will be calculated includes all distances

in the interval between zero and the fixed distance class.

The spatial analysis considers all samples that are repre-

sented by a distance greater than the previous distance

class, and lesser or equal than the upper distance class

(Flanagan 2006). The sets of pseudocorrelations are then

sorted, and a (1 - a)% confidence interval is constructed
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from the (1 - a/2)th value and the (a/2)th value, respec-

tively (Smouse and Peakall 1999). A significance test at

each lag is obtained by comparing the observed correlation

coefficient with those obtained from a large number of

spatial permutations of the same sampled individuals.

Applications to data

Data and statistical approaches

The non-parametric and parametric variogram approaches to

model trends in genetic distance versus spatial distance plots

are illustrated by using a dataset involving 38 individual

DNA samples of Rattus fuscipes generated by Peakall et al.

(2003). This dataset contains just one of the eight populations

in the original dataset published by Peakall et al. (2003). The

file involves four microsatellite loci called C2, E5, CR and

PB used to evaluate ecological and genetic impacts of habitat

fragmentation on the spread of Australian bush rat. Lin-

denmayer and Peakall (2000) provide the background to the

microsatellite loci used to genotype georeferenced samples

in such study. The samples were taken at random from 1 km.

transects within a single population. A thorough under-

standing of the sampling and biological context underlying

this dataset can be obtained from Peakall et al. (2003) and

(2006). The dataset used here is named as BushRat Single-

Pop.xls, and constitutes an example file in GenAlEx 6

software (Peakall and Smouse 2006). The dataset was pre-

viously analysed by Peakall et al. (2003), reporting a positive

spatial correlation up to 200 m. This result was used here to

compare the findings obtained from the non-parametric and

parametric variogram-based analyses.

The relationship between squared multivariate genetic

and spatial distances was modelled using LOESS as

implemented in SAS Proc Loess (SAS Institute 2004,

version 9.1). By means of information criteria derived from

alternative fittings with different smoothing parameters

(Table 1), we selected a smoothing parameter value equals

to 0.6. Selecting the optimal smoothing function in this

way will have little impact on the outcomes of the spatial

analysis as shows the last column in Table 1.

Two connected polynomial functions or segmented

regressions (Jennrich and Moore 1975), one of zero-slope,

were fitted over the distance predicted by LOESS. These

linear approximations to the smoothed function allowed the

estimation of the ‘‘sill’’ (genetic variability under spatial

structure), and the ‘‘range’’ (distance beyond which

observations are spatially uncorrelated). An indicator var-

iable, functionally dependent on the range, was used to fit

the segmented regressions (Appendix A). Three geo-sta-

tistical parametric models (exponential, spherical and

Gaussian) were also fitted using SAS Proc Nlin (SAS

Institute, 2004. version 9.1) (Appendix B). Both, non-

parametric and parametric variograms were applied to the

Euclidean measure of multivariate genetic distances as well

as to single-locus distances. The LOESS fit was compared

with those from parametric models using residual mean

squares. The dataset was also analysed using GenAlEx

software (Peakall and Smouse 2006) with distance classes

of 10, 35, 50 and 200 m which implied discrete correlo-

grams base on 10, 35, 50 and 200 lags, respectively.

Results

The following results were obtained from the multivariate

genetic distances. Figure 3 shows the fitted trends in the

genetic distance versus spatial distance plot and the

derived correlograms for the parametric and the non-

Table 1 Statistical criteria for smoothing parameters value selection in the example dataset

Smoothing parameter Local points Fitting criteria Predicted range

GCV AICC AICC1

0.1 69 0.00554 2.3542 1641.08975 167

0.2 139 0.00546 2.3392 1630.50268 169

0.3 209 0.00544 2.3362 1628.31969 175

0.4 278 0.00544 2.3364 1628.48877 180

0.5 348 0.00545 2.3367 1628.70751 186

0.6 418 0.00545 2.3372 1629.01259 213

0.7 487 0.00547 2.3412 1631.80800 269

0.8 557 0.0055 2.3459 1635.06294 324

0.9 627 0.00552 2.3511 1638.72101 409

GCV Generalised cross-validation; AICc and AICc1: bias corrected Akaike information criterion

Fig. 3 Non-parametric (a) and parametric exponential (b), spherical

(c) and Gaussian (d) fitting of squared Euclidean genetic distances

versus spatial distances and derived correlograms

c
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parametric approaches to variogram-based analysis. In

Table 2, we present the estimated parameters (sill, range

and nugget effect) under each approach. The plot of

squared Euclidean genetic distance between DNA samples

Z sið Þ and Z sj

� �
against h (sample spatial distance) fitted

by LOESS suggested an empirical range of 213 m. This

result is similar to those obtained by the Gaussian and

Spherical models (range 199 and 225 m, respectively)

because the error is similar into both ways. These findings

show that individuals might be genetically related up to

distances of about 200 m. Even though very similar fit-

tings were obtained for all approaches, the residual mean

square (Table 3) shows a relative better fit whit the

LOESS/SR method. The estimate of the sill by the seg-

mented regressions was 6.6, and the estimate of the

nugget effect 4.5. These values allow inference about the

population variance under autocorrelation. In agreement

with the findings of Peakall et al. (2003) the new

approach for autocorrelation analysis also indicates that

proximate individuals are more related than average. If

individual relationship were spatial distance independent

(samples random distributed in space), a constant function

at the average genetic distance will fit the trend. It is of

further interest that the extent of spatial genetic structure

detected in this analysis (199–359 m) under the different

models is similar to that estimated by Peakall et al. (2003)

(200 m for a distance class size of 50 m, 400 m for a

distance class of 200 m, see also Fig. 4).

In Table 4, we show the number of observation pairs

available at each lag (h) for distance classes of 35 and 50 m

with the average and the variance of the Euclidean genetic

distances at each lag. Those mean values are defining the

semivariograms trends captured by the discrete correlo-

gram and the variogram based-analyses. However, in the

variogram approaches the selection of a distance class size

is not a requirement.

In Fig. 4, the correlograms obtained from GenAlEx 6

software (Peakall and Smouse 2006) for several sizes and

number of distance class are shown. Significant autocor-

relations are suggested for all values of distance classes

since all curves cross the x-axis and the verticals bars

(which represent 95% confidence intervals) that not touch

the zero line (null correlation coefficient) for at last one

lag. However, the spatial distance with significant corre-

lation coefficient is highly dependent on the selected

distance classes. The standard errors of the correlation

coefficient estimates are also dependent on the distance

class size since the number of data points changes

(Table 5). The stability of the estimates throughout hun-

dred runs of the procedure was high, which was reflected

by a low coefficient of variation of the obtained results

(Table 5).

In the locus-by-locus analyses, the LOESS/SR method

as well as the Gaussian parametric semivariogram pro-

duced the best fits of the squared genetic distance versus

spatial distance plot for most loci. Table 6 shows the

estimates of the nugget effect, sill and range of the best fit

among the parametric semivariogram models and the

LOESS/SR method for the single-locus analyses. The

spatial structure is not consistent across loci, as is reflected

by the high variability of semivariogram range. The esti-

mated range from a plot obtained from multivariate genetic

distances is not the average single-locus range. However,

for the E5 and CR loci the function relating genetic dis-

tance with spatial distance showed similar shape than the

function modelling multivariate distances. The E5 and CR

were those loci with higher effective allele number and

higher expected heterozygosis (Table 7).

A cline structure may cause a linear change of semi-

variances with distance (Wagner et al. 2005), so linear fit

may result better than nonlinear variograms for same loci.

The extent of the genetic dissimilarities is higher in the

multivariate approach than in the single-locus one as is

reflected by the sill estimates of Table 6 with respect to

those in Table 2.

Table 2 Estimates of the nugget, sill and range parameters and non-

parametric functions modelling multivariate squared Euclidean

genetic distances versus spatial distances

Fit Parameter Estimate

Exponential semivariogram Nugget 4.2

Sill 6.8

Range 359.0

Spherical semivariogram Nugget 4.2

Sill 6.5

Range 225.0

Gaussian semivariogram Nugget 4.6

Sill 6.6

Range 199.0

LOESS/SR semivariogram Nugget 4.5

Sill 6.6

Range 213.0

Table 3 Goodness of fit of squared Euclidean genetic distances

versus spatial distances from parametric and non-parametric geosta-

tistical approaches

Fit RMS

Exponential semivariogram model 3.7967

Spherical semivariogram model 3.7942

Gaussian semivariogram model 3.7866

LOESS 3.7784

RMS Residual mean square
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Discussion

This paper introduces a new approach for autocorrelation

analysis from genetic data at fine scale. The method is

supported by a well-established geostatistical approach,

i.e., the variogram-based analysis, with modifications that

attempt to reduce some of the underlying assumptions to

facilitate variogram fittings. Instead to work with semi-

variances, the method uses a plot of the squared Euclidean

genetic distances vs. spatial distances between pairs of

Table 4 Number of pairs of observations available at each lag (h), and the corresponding averages and variances of genetic distance values

35 h step apart Data pairs Average d2
ij Variance d2

ij 50 h step apart Data pairs Average d2
ij Variance d2

ij

35 54 4.80 3.07 50 68 4.85 2.90

70 110 5.02 2.68 100 167 5.56 3.68

105 57 6.32 4.08 150 62 6.40 4.08

140 53 6.32 3.95 200 65 6.25 3.78

175 44 6.50 3.47 250 65 6.42 5.25

210 44 6.14 4.35 300 47 6.40 5.72

d2
ij : squared Euclidean genetic distance between ZðsiÞ and ZðsjÞ
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Fig. 4 Correlograms obtained

from GenAlEx 6 software for 10

(a), 35 (b), 50 (c) and 200 m (d)

as distance class sizes. Vertical
bars show standard errors of the

correlation coefficient r at each

distance class. Dotted lines
show lower and upper 95%

confidence limits for the

expected correlation
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DNA-samples. The use of this plot as empirical variogram

is supported by the fact that for any stationary spatial

process the variances can be expresses as Euclidean dis-

tances (Schabenberger and Gotway 2005) and the

calculated genetic distances are metrics (Smouse and

Peakall 1999). Distances are commonly easier to under-

stand the variances, then the plot is easier to understand

than the classical semivariogram used in geostatistics.

As other variogram-based approaches the proposed

method allows addressing two important aspects of fine-

scale spatial genetic analyses: the identification of a non-

random distribution of genotypes in space, and the esti-

mation of the magnitude of any non-random structure. Both

aspects are related with the x point at which the variogram

reaches or approaches asymptotic values. If there is not a

spatial structure a constant fit is expected since genetic

distance is not related with spatial distance. If the vario-

gram represents a stationary process as indicated by the

presence of a sill, the range can be estimated. In such case,

the underlying trend in the genetic distances against the

spatial sample separation can be fitted by two simple

polynomials, one with positive slope and other with zero

slope, the magnitude of the autocorrelation is estimated by

the x point at which this change exist. The direct statistical

comparison of ranges among variograms is correct since it

is estimated under the spatial process, and no permutational

methods are required for assessing statistical significance

of the extent of autocorrelation.

The analogous parameter in the classical variogram

approach is the semivariogram range. Since the expected

shape of spatial genetic structure is usually nonlinear in its

parameter, the classical variogram fittings uses iterative

numerical procedures which demand initial values (pre-

definition) for the parameters including the range. With the

use of LOESS (Cleveland et al. 1988; Cleveland and

Grosse 1991), which is a smoothing technique free of need

to specify initial parameter values we successfully fitted the

trend embedded in the distance-based variogram. In such

way, the LOESS/SR method avoids typical assumptions on

parameter values of classical variogram analysis.

LOESS fits the trend of interest by running several local

linear weighted regressions. In the LOESS/SR method one

still has to select a radius for a local neighbourhood in the

smoothing process, but this can be done by means of well

established information criteria. The smoothing parameter is

related to the empirical fit and not to the underlying spatial

process since the x points in a distance neighbour are not

necessary neighbours in the space. The LOESS procedure

does not work with fixed windows of data; it uses the idea of

moving windows or overlapped subsets of distance data.

Therefore, the method minimises potential problems asso-

ciated with the predefinition of distance classes, a point

made by other authors for discrete correlograms (Smouse

and Peakall 1999; Hardy et al. 2003; Peakall et al. 2003). A

range of smoothing parameters could produce good fittings

of the data. However, when the smoothing parameters are

identified by likelihood based criteria and conservatively

selected, the effect if any different smoothing parameters

Table 6 Estimates of nugget,

sill and range parameters of

functions modelling single-

locus squared Euclidean genetic

distances versus spatial

distances

a At each locus, results from the

best of the parametrical fitting

and the non-parametrical

method

Locus Functiona Nugget estimate Sill estimate Range estimate

C2 Gaussian semivariogram 1.2 3.6 1,954

LOESS/SR 1.1 2.1 928

CR Spherical semivariogram 1.5 1.8 162

LOESS/SR 1.5 1.8 107

E5 Gaussian semivariogram 1.2 1.7 130

LOESS/SR 1.2 1.7 115

PB Gaussian semivariogram 0.8 2.1 612

LOESS/SR 0.7 2.0 551

Table 7 Diversity indices, number of alleles (Na), effective number

of alleles (Ne), information index (I), the observed (Ho) and expected

heterozygosity (He) per locus and at the whole population

Locus N Na Ne I Ho He

C2 38 6.000 3.903 1.551 0.816 0.744

E5 38 9.000 6.763 2.034 0.921 0.852

CR 38 9.000 5.378 1.833 0.763 0.814

PB 38 7.000 3.446 1.429 0.763 0.710

Population mean 38 7.750 4.873 1.712 0.816 0.780

Table 5 Expected values of correlogram x-intercepts (‘‘range’’) for

distance class 10, 35, 50 and 200 m from discrete correlograms

Distance

class

size (m)

Average

x-intercept

(m)

Coefficient of

variation

x-intercept

(%)

Number of

observations

at each lag

10 79 0.61 10

35 134 0.59 32

50 170 1.53 44

200 363 0.73 176

Coefficient of variation for the estimated x-intercept from 100 runs of

1,000 permutation cycles for each distance class
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will have on the biological results will be smoothed. There

exist automatically routines and statistical criteria that could

help researches with an objective selection regarding

smoothing parameters (Cohen 1999). We run the analyses

under several smoothing parameters (0.01–1) and values

from 0.3 to 0.6 produce good fittings according the corrected

Akaike information criteria (smaller is better) and the GVC

index. The biological inferences drawn from any of these

neighbourhood sizes do not show significant differences.

Most available statistical software provides facilities for

easy implementation of LOESS.

The LOESS/SR procedure is similar to fit a tent (linear–

linear) variogram model (Schabenberger and Gotway

2005) but with higher robustness to outliers because of the

smoothing process carried out in the first procedure step.

Since it is expected high variability of multivariate dis-

tances, the application of a smoothing procedure could

favour the rescue of signal over noise in the variogram. The

LOESS/SR procedure is more ‘‘robust’’ to the unbalanced

in the number of data points at different distance classes

compared to the parametric models since it is a charac-

teristic of the smoothing procedure.

The LOESS/SR method is a new approach for vario-

gram-based analysis that would simplify dispersal studies

by autocorrelation analysis. However, it is important to

remember that estimating biological parameters from

empirical variogram analysis would be only valid if the

scale of the study is appropriate, and the assumption of

stationarity should be checked. In the parametric variogram

approach, the assumption of stationarity may be statistically

evaluated by comparing homoscedastics versus heteros-

cedastics spatial fits of the genetic distances versus spatial

distance relationship using SAS PROC Mixed or other

software with similar facilities. Further research on testing

this assumption in the LOESS/SR procedure will be useful.

However, it is logical to expect lesser impact of heteroge-

neity of variance (lack of stationarity) with smoothing

techniques than classical model fitting. Nevertheless, sim-

plicity of smoothing techniques as applied in variogram-

based analyses invites researchers to shorten distances

between theory and practice of geostatistics in genetics.
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 SAS code to fit non-parametric  semivariograms and correlograms form genetic  
squared Euclidean distance (xgen) and sample spatial (xg) distance. 

/*----------------------------------- Non parametric fit: LOESS -------------------------------------------*/ 

proc loess ;

ods output OutputStatistics= Modelstats;  

model xgen=xg /  residual  clm alpha=0.05 smooth=0.6 details(outputStatistics ModelSummary) ; 

/*---------------------------------- Plot of LOESS semivariogram ----------------------------------------*/ 

proc gplot data= Modelstats;  

   by SmoothingParameter; 

      plot (depvar pred)*xg    / overlay  ;  

/*----------------------------------- -------------Estimation of range ---------------------------------------*/ 

proc nlin data=Modelstats;  

parms nugget=4 sill=4.5 range=150;

b=(sill-nugget)/range; 

 if xg<range    then    model pred=nugget+b*xg ;  

 else  model pred=nugget+b*range ;  

   end;
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Appendix B

SAS code to fit parametric semivariograms and correlograms form genetic squared 
Euclidean distance (xgen) and sample spatial (xg) distance.  

/*------------------------------- Parametric fit: Exponential semivariogram --------------------------*/ 

proc nlin           ; 

parameters   sill=6.5        range=200             nugget=1.5        ; 

bounds nugget > 0; 

semivariogram = nugget + (sill-nugget)*(1-exp(-3*xg/range)); 

model xgen = semivariogram ; 

output out=fitexp     predicted=pexp      residual=resexp      parms=sill range nugget;

/*------------------- Correlogram derived from Exponential semivariogram -----------------------------*/ 

data Correlogram ; 

set fitexp; 

corr=1-((nugget + (sill-nugget)*(1-exp(-3*xg/range)))/sill); 

/*--------------------------- Parametric fit: Spherical semivariogram --------------------------------------*/ 

proc nlin  ; 

parameters     sill=6.5        range=200                nugget=1.5; 

bounds nugget > 0; 

if xg <= range    then   do; 

semivariogram = nugget+((sill-nugget)*(((3/2)*(xg/range))-(1/2*((xg/range)**3)))); 

model    xgen = semivariogram  ; end; 

if xg > range          then       model xgen = nugget+(sill-nugget); 

output out=fitSph             predicted=pSph   residual=resSph                parms=sill range nugget;

/*--------------------------- Correlogram derived from Spherical semivariogram -------------------------*/ 

data correlogram; 

set fitSph; 

if xg <= range    then         do; 

Corr=1-((nugget+((sill-nugget)*(((3/2)*(xg/range))-(1/2*((xg/range)**3)))))/sill); end; 

if xg > range        then     ;  

Corr = 1-((nugget+((sill-nugget)*(((3/2)*(range/range))-(1/2*((range/range)**3)))))/sill);

/*------------------------------ Parametric fit: Gaussian semivariogram ------------------------------------*/ 

proc nlin ; 

parameters        sill=6.5             range=200          nugget=1.5; 

bounds nugget > 0; 

semivariogram = nugget + ((sill-nugget)*(1-exp(-3*((xg/range)**2)))); 

model        xgen = semivariogram; 

output out=fitG             predicted=pG       residual=resG    parms=sill range nugget;   

/*--------------- Correlogram derived from Gaussian semivariogram -----------------------------------*/ 

data correlogram ; 

set fitG; 

corr=1-((nugget + ((sill-nugget)*(1-exp(-3*((xg/range)**2)))))/sill); 

run;
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Hardy O-J, Charbonnel N, Fréville H, Heuertz M (2003) Microsat-

ellite allele size: test to assess their significance on genetic

differentiation. Genetics 163:1467–1482

Hedrick P (2005) Genetic of populations, Third edn. Jones and

Bartlett Publishers, Sudbury

Heywood J-S (1991) Spatial analysis of genetic variation in plant

population. Ann Rev Ecol Syst 22:335–355

Hurvich C-M, Simonoff J-S, Tsai C-L (1998) Smoothing parameter

selection in nonparametric regression using an improved Akaike

information criterion. J R Stat Soc B 60:271–293

Jennrich R-I, Moore R-H (1975) Maximum likelihood estimation by

means of nonlinear least squares. In: American statistics

proceedings of the statistical computing section, pp 57–65

Lembo A (2007) Course spatial modeling and analysis. Cornell

University. http://www.css.cornell.edu/courses/620/css620.html.

Cited spring 2007

Lindenmayer D, Peakall R (2000) The Tumult experiment-integrating

demographic demographic and genetic studies to unravel

fragmentation effects: a case study of the native Bush Rat. In:

Young A, Clarke G (eds) Genetics, demography and the viability

of fragmented population. Cambridge University Press, London,

pp 173–201

Litt M, Luty J (1989) A hypervariable microsatellite revealed by in

vitro amplification of a dinucleotide repeat within the cardiac

muscle actin gene. Am J Hum Genet 44:398–401

Loader C (2004) Smoothing: local regression techniques. In: Gentle J,

Wolfgang H, Yoichi M (eds) Handbook of computational

statistics. Springer, Heidelberg

Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape

genetics: combining landscape ecology and population genetics.

Trends Ecol Evol 18(4):189–197

Marquardt P, Epperson B-K (2004) Spatial and population genetic

structure of microsatellite in white pine. Mol Ecol 13:3305–3315
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